Package 'TimeSpaceAnalysis'

Title: Statistical tools for time-space analysis
Description: Use Geometric Data Analysis approaches (e.g. MCA or MFA), time pattern analysis (see "time sequence clustering") and places chronologies (see "time geography") analysis.
Authors: Fabian Mundt
Maintainer: Fabian Mundt <[email protected]>
License: AGPL (>= 3) | file LICENSE
Version: 2.0.6
Built: 2025-03-09 15:18:18 UTC
Source: https://github.com/inventionate/TimeSpaceAnalysis

Help Index


Concat the categories of a variable

Description

Concat the categories of a variable

Usage

add_path(
  res_gda_quali,
  var,
  var_levels = NULL,
  exclude = NULL,
  axes = 1:2,
  linetype = "dashed",
  colour = "black",
  size = 1
)

Arguments

res_gda_quali

GDA result.

var

variable name.

var_levels

categories to concat.

exclude

categories to exclude.

axes

axes to plot.

linetype

linetype of concat path.

colour

colour of concat path.

size

size of concat path.

Value

ggplo2 path geom.


Optimise ggplot2 plot.

Description

Optimise ggplot2 plot.

Usage

add_theme(plot, font_family = "Fira Sans Condensed Medium")

Arguments

plot

ggplot2 object.

font_family

plot overall font family.

Value

ggplot2 geoms.


Extract list of MFA group indices to exclude (for sMFA).

Description

Extract list of MFA group indices to exclude (for sMFA).

Usage

excl_mfa_group(df_mfa, group_mfa, pattern)

Arguments

df_mfa

MFA optmised data frame.

group_mfa

MFA group definition.

pattern

search pattern (regular expression).

Value

list with MFA group specific exclude indices.


Extract legends form ggplot2 objects.

Description

Extract legends form ggplot2 objects.

Usage

extract_legend(p)

Arguments

p

ggplot2 object (plot) containing legends (guides).

Value

plottable legend grob.


Add supplementary individuals.

Description

Add supplementary individuals.

Usage

fviz_add_sup_ind(
  res_gda,
  sup_ind = NULL,
  colour = "red",
  ind_visible = FALSE,
  label = NULL,
  size = 10,
  group = NULL,
  group_names = NULL,
  group_style = "both",
  axes = 1:2
)

Arguments

res_gda

MCA results.

sup_ind

supplementary individual profiles (data.frame).

colour

colour of point and labels.

ind_visible

show individual points.

label

label names.

size

label size.

group

vector containing group definition.

group_names

names of the groups.

group_style

style to plot (vector containing "shape", "colour" or "both).

axes

the GDA dimensions to plot.

Value

ggplot2 visalization of supplementary individuals.


Visualize HCPC hclus trees.

Description

Visualize HCPC hclus trees.

Usage

fviz_dendrogram(
  res_hcpc,
  palette = NULL,
  cluster = 1,
  labels = FALSE,
  circle = FALSE,
  hline = 0.8,
  pointsize = 2,
  linetype = "dashed",
  cut_height = NULL,
  title = NULL,
  cut_upper = NULL,
  colour_upper = "#555555",
  hlabel = NULL,
  hlabel_pos = 0.001
)

Arguments

res_hcpc

(s)HCPC results.

palette

colour definition per cluster.

cluster

amount of clusters.

labels

plot labels (boolean).

circle

plot circle (boolean).

hline

hline height.

pointsize

leaves pointsize.

linetype

hline linetype.

cut_height

cut dendrogram at specific hight.

title

the plot title.

cut_upper

style upper dendrogram.

colour_upper

colour of the upper dendrogram.

hlabel

label of hline.

hlabel_pos

position of hlabel.

Value

ggplot2 dendrogram visualization.


Title

Description

Title

Usage

fviz_gda_conc_ellipse(
  res_gda,
  level = 0.8647,
  alpha = 0.1,
  colour = "black",
  linetype = "dotted",
  density = FALSE,
  fill = NA,
  axes = 1:2,
  scale_size = 1,
  title = "GDA individuals plot",
  plot_modif_rates = TRUE,
  axis_lab_name = "Achse",
  labels = NULL,
  xlim = NULL,
  ylim = NULL,
  blank = FALSE
)

Arguments

res_gda

GDA result.

level

ellipse level (default 86.47%).

alpha

opacity level (default 0.1).

colour

ellipse border colour.

linetype

ellipse edge linetype.

density

show density contours (boolean).

fill

ellipse fill colour.

axes

the GDA dimensions to plot.

scale_size

scale minimal point size.

title

the plot title.

plot_modif_rates

plot modified rates instead of eigenvalue percentage (boolean).

axis_lab_name

name of axis label.

labels

label axes (vector of length 4; left, right, top, bottom).

xlim

x Axis limits (vector of length 2).

ylim

y Axis limits (vector of length 2).

blank

visualisation without labels and tick values.

Value

ggplot2 GDA visualisation with concentration ellipse.


Visualize interaction cloud.

Description

Visualize interaction cloud.

Usage

fviz_gda_interaction(
  res_gda,
  df_var_quali,
  var_quali,
  title = "MCA quali interaction effects",
  mean_alpha = 0.75,
  path_linetype = "solid",
  path_size = 1,
  path_colour = "black",
  scale_mean_points = TRUE,
  axes = 1:2,
  palette = "Set1",
  path_alpha = 1,
  impute = TRUE,
  variable = "both",
  plot_modif_rates = TRUE,
  axis_lab_name = "Achse",
  labels = NULL
)

Arguments

res_gda

MCA result.

df_var_quali

crossed variable data frame.

var_quali

name of crossed supplementary variable.

title

plot title.

mean_alpha

alpha of the mean point.

path_linetype

linetype of concat path.

path_size

size of concat path.

path_colour

colour of concat path.

scale_mean_points

scale mean points (boolean).

axes

axes to plot.

palette

used colour brewer palette.

path_alpha

opacity of the path.

impute

use imputation to handle missing data.

variable

which diagram to plot (vector containing 1, 2 or "both").

plot_modif_rates

plot modified rates instead of eigenvalue percentage (boolean).

axis_lab_name

name of axis label.

labels

label axes (vector of length 4; left, right, top, bottom).

Value

ggplot2 interaction cloud visualizsation.


Title

Description

Title

Usage

fviz_gda_quali_ellipses(
  res_gda,
  df_var_quali,
  var_quali,
  title = NULL,
  facet = TRUE,
  alpha_point = 0.75,
  conc_linetype = "solid",
  conf_linetype = "solid",
  scale_mean_points = TRUE,
  axes = 1:2,
  colour = "Set1",
  impute = TRUE,
  concentration_ellipses = TRUE,
  confidence_ellipses = FALSE,
  conf_colour = FALSE,
  plot_modif_rates = TRUE,
  ncol = 3,
  individuals = TRUE,
  impute_ncp = 2,
  reorder = NULL,
  alpha_ellipses = 0.15,
  print_eta2 = TRUE,
  axis_lab_name = "Achse",
  label_mean_points = TRUE,
  highlight = FALSE,
  profiles = NULL,
  labels = NULL,
  axes_annotate_alpha = 0.3,
  density = FALSE,
  global_conc_ellipses = TRUE,
  in_freq = FALSE,
  facet_title_size = 14
)

Arguments

res_gda

GDA (MCA, MFA) result (rownames have to be individual questionnaire IDs).

df_var_quali

data frame of one quali variable.

var_quali

name if quali variable.

title

plot title.

facet

whether facet ellipses or not (boolean).

alpha_point

opacity of individual points.

conc_linetype

linetype of concentration ellipses.

conf_linetype

linetype of confidence ellipses.

scale_mean_points

scale mean point size in respect of the group size (boolean).

axes

the GDA dimensions to plot.

colour

Colour brewer scale or FALSE.

impute

impute missing data (boolean).

concentration_ellipses

plot concentration ellipse (boolean).

confidence_ellipses

plot confidence ellipses (boolean).

conf_colour

colour confidence ellipses (boolean).

plot_modif_rates

plot modified rates instead of eigenvalue percentage (boolean).

ncol

Number of facet columns.

individuals

show individual points (boolean).

impute_ncp

number of dimensions to predict missing values.

reorder

numeric vector containing new level order (index).

alpha_ellipses

concentration ellipses fill alpha.

print_eta2

print eta2 value per axis (boolean).

axis_lab_name

name of axis label.

label_mean_points

show labels (boolean).

highlight

show facets with highlighted group (boolean).

profiles

optional add specific profiles (tibble).

labels

label axes (vector of length 4; left, right, top, bottom).

axes_annotate_alpha

alpha value of axes annotations.

density

show density contours (boolean).

global_conc_ellipses

should the global concentration ellipse be shown (boolean).

in_freq

order by number of observations with each level (largest first) (boolean).

facet_title_size

size of the facet stripe title (numeric).

Value

ggplot2 visualization with concentration and quali var ellipses.


Visualize supplementary variables.

Description

Visualize supplementary variables.

Usage

fviz_gda_quali_supvar(
  res_gda,
  df_var_quali,
  var_quali,
  title = NULL,
  path = FALSE,
  linetype = "solid",
  axes = 1:2,
  scale_point = TRUE,
  size_point = 3,
  scale_text = FALSE,
  size_text = 3,
  palette = "Set1",
  impute = TRUE,
  plot_modif_rates = TRUE,
  impute_ncp = 2,
  relevel = NULL,
  print_eta2 = TRUE,
  axis_lab_name = "Achse",
  axes_annotate_alpha = 0.3,
  labels = NULL,
  xlim = NULL,
  ylim = NULL,
  accuracy = 0.1,
  pos_adjust = 0.001,
  colour_point = FALSE
)

Arguments

res_gda

GDA result.

df_var_quali

crossed variable data frame.

var_quali

crossed variable name.

title

plot title.

path

plot path (boolean).

linetype

specify path linetype.

axes

which axes should be plotted.

scale_point

scale points by weight (boolean).

size_point

define point size.

scale_text

scale text by weight (boolean).

size_text

define text size.

palette

RColorBrewer palette.

impute

impute missing data (boolean).

plot_modif_rates

plot modified rates instead of eigenvalue percentage (boolean).

impute_ncp

number of dimensions to predict missing values.

relevel

character vector containing new level order.

print_eta2

print eta2 value per axis (boolean).

axis_lab_name

name of axis label.

axes_annotate_alpha

alpha value of axes annotations.

labels

label axes (vector of length 4; left, right, top, bottom).

xlim

x Axis limits (vector of length 2).

ylim

y Axis limits (vector of length 2).

accuracy

numeric vector (defaults to 0.1).

pos_adjust

numeric vector for axis labels adjustment (defaults to 0.001)

colour_point

should the points be coloured (boolean)?

Value

ggplot2 visualization of supplementary variables.


Visualize additive cloud.

Description

Visualize additive cloud.

Usage

fviz_gda_structure(
  res_gda,
  df_var_quali,
  var_quali,
  title = NULL,
  scale_mean_points = TRUE,
  axes = 1:2,
  palette = "Set1",
  impute = TRUE,
  cloud = "both",
  plot_modif_rates = TRUE,
  axis_lab_name = "Achse",
  labels = NULL,
  axes_annotate_alpha = 0.3
)

Arguments

res_gda

MCA result.

df_var_quali

crossed variable data frame.

var_quali

name of quali variable.

title

plot title.

scale_mean_points

scale points (boolean).

axes

which axis to plot.

palette

colour palette (boolean).

impute

impute missing data (boolean).

cloud

which cloud should be plotted (string: real, fitted, both, deviation)

plot_modif_rates

plot modified rates instead of eigenvalue percentage (boolean).

axis_lab_name

name of axis label.

labels

label axes (vector of length 4; left, right, top, bottom).

axes_annotate_alpha

alpha value of axes annotations.

Value

ggplot2 visualization of additive cloud.


Visualization of trajectories (connected active and passive individual points).

Description

Visualization of trajectories (connected active and passive individual points).

Usage

fviz_gda_trajectory(
  res_gda,
  select = list(name = NULL, within_inertia = NULL, case = NULL),
  title = NULL,
  axes = 1:2,
  ind_labels = FALSE,
  time_point_names = NULL,
  plot_modif_rates = TRUE,
  axis_lab_name = "Achse",
  labels = NULL,
  legend_x = 0.12,
  legend_y = 0.9,
  axes_annotate_alpha = 0.3,
  xlim = NULL,
  ylim = NULL
)

Arguments

res_gda

MCA result (rownames have to be questionnaire IDs including time number, e.g. 87654_1).

select

vector of names, within_inertia of individuals selection (within_inertia: vector containing the number of high variation and low variationindividuals) or case (vector containing NULL, complete, or incomplete).

title

the plot title

axes

axes to plot.

ind_labels

plot labels (boolean).

time_point_names

vector containing the name of the time points.

plot_modif_rates

plot modified rates instead of eigenvalue percentage (boolean).

axis_lab_name

name of axis label.

labels

label axes (vector of length 4; left, right, top, bottom).

legend_x

x position of legend.

legend_y

y position of legend.

axes_annotate_alpha

alpha value of axes annotations.

xlim

x Axis limits (vector of length 2).

ylim

y Axis limits (vector of length 2).

Value

trajectory ggplot2 visualization.


Visualization of trajectory structuring factor ellipses.

Description

Visualization of trajectory structuring factor ellipses.

Usage

fviz_gda_trajectory_ellipses(
  res_gda,
  df_var_quali,
  var_quali,
  axes = 1:2,
  impute = TRUE,
  time_point_names = NULL,
  ind_points = TRUE,
  concentration_ellipse = TRUE,
  title = NULL,
  plot_modif_rates = TRUE,
  alpha = 0.15,
  select = NULL,
  select_facet = TRUE,
  labels = NULL,
  xlim = NULL,
  ylim = NULL,
  axes_annotate_alpha = 0.3,
  complete_obs = FALSE,
  facet_title_size = 14,
  density = FALSE,
  ellipses = TRUE
)

Arguments

res_gda

MCA result (rownames have to be questionnaire IDs including time number, e.g. 87654_1).

df_var_quali

data frame containing one qualitative variable (with IDs as rownames).

var_quali

name of the structuring variable.

axes

the axes to plot.

impute

use imputation for missing data.

time_point_names

vector containing the name of the time points.

ind_points

show individuals (boolean).

concentration_ellipse

plot concentration ellipses (boolean).

title

title of the plot.

plot_modif_rates

plot modified rates instead of eigenvalue percentage (boolean).

alpha

ellipse fill alpha.

select

choose cluster/category.

select_facet

facet clusters/categories (boolean.)

labels

label axes (vector of length 4; left, right, top, bottom).

xlim

x limits.

ylim

y limits.

axes_annotate_alpha

alpha value of axes annotations.

complete_obs

plot only complete observations (boolean).

facet_title_size

size of the facet stripe title (numeric).

density

should 2D density lines be drawn (boolean).

ellipses

should ellipses be drawn (boolean).

Value

ggplot2 visualization.


Visualize trajectories and structuring factors.

Description

Visualize trajectories and structuring factors.

Usage

fviz_gda_trajectory_quali(
  res_gda,
  df_var_quali,
  var_quali,
  var_quali_select = NULL,
  axes = 1:2,
  ind_labels = FALSE,
  title = NULL,
  time_point_names = NULL,
  select = list(name = NULL, within_inertia = NULL, case = NULL),
  impute = TRUE,
  plot_modif_rates = TRUE,
  labels = NULL,
  xlim = NULL,
  ylim = NULL,
  axes_annotate_alpha = 0.3,
  case_names = NULL,
  label_x_limits = NA,
  label_y_limits = NA
)

Arguments

res_gda

MCA result (rownames have to be questionnaire IDs including time number, e.g. 87654_1).

df_var_quali

data frame containing one qualitative variable (with IDs as rownames).

var_quali

name of the structuring variable.

var_quali_select

the name of the selected categories/clusters.

axes

the axes to plot.

ind_labels

plot labels (boolean).

title

the plot title.

time_point_names

vector containing the name of the time points.

select

select vector of names, within_inertia of individuals selection (within_inertia: vector containing the number of high variation and low variationindividuals) or case (vector containing NULL, complete, or incomplete).

impute

use imputation for missing data.

plot_modif_rates

plot modified rates instead of eigenvalue percentage (boolean).

labels

label axes (vector of length 4; left, right, top, bottom).

xlim

numeric vector of 2.

ylim

numeric vector of 2.

axes_annotate_alpha

alpha value of axes annotations.

case_names

named character vector containing names of cases.

label_x_limits

constrain the labels to a specific area. Limits are specified in data coordinates.

label_y_limits

constrain the labels to a specific area. Limits are specified in data coordinates.

Value

ggplot2 visualization.


Visualization of the separated concentration ellipses of the sample.

Description

Visualization of the separated concentration ellipses of the sample.

Usage

fviz_gda_trajectory_sample(
  res_gda,
  time_point_names = NULL,
  axes = 1:2,
  ind_points = TRUE,
  concentration_ellipse = TRUE,
  complete = TRUE,
  title = NULL,
  plot_modif_rates = TRUE,
  alpha = 0.15,
  axis_lab_name = "Achse",
  axes_annotate_alpha = 0.3,
  labels = NULL,
  legend_x = 0.12,
  legend_y = 0.9,
  xlim = NULL,
  ylim = NULL
)

Arguments

res_gda

MCA result (rownames have to be questionnaire IDs including time number, e.g. 87654_1).

time_point_names

vector containing the name of the time points.

axes

the axes to plot.

ind_points

show individuals (boolean).

concentration_ellipse

show or hide overall concentration ellipse (boolean).

complete

plot only complete cases (boolean).

title

title of the plot

plot_modif_rates

plot modified rates instead of eigenvalue percentage (boolean).

alpha

ellipse fill alpha.

axis_lab_name

name of axis label.

axes_annotate_alpha

alpha value of axes annotations.

labels

label axes (vector of length 4; left, right, top, bottom).

legend_x

x position of legend.

legend_y

y position of legend.

xlim

x Axis limits (vector of length 2).

ylim

y Axis limits (vector of length 2).

Value

ggplot2 visualization.


Visualize specific contributing modalities in a plane.

Description

Visualize specific contributing modalities in a plane.

Usage

fviz_gda_var(
  res_gda,
  contrib = "auto",
  title = NULL,
  axes = 1:2,
  group = NULL,
  group_names = NULL,
  group_style = "both",
  textsize = 4,
  colour_palette = "Set1",
  individuals = FALSE,
  individuals_size = "auto",
  individuals_alpha = 0.5,
  individuals_names = FALSE,
  plot_modif_rates = TRUE,
  axis_lab_name = "Achse",
  group_lab_name = "Themengruppen",
  labels = NULL,
  xlim = NULL,
  ylim = NULL,
  alpha = 1
)

Arguments

res_gda

GDA result data frame.

contrib

"auto" calculates the optimal modalities to show (based on the basic criterion). Otherwise define an amount of modalities to plot.

title

plot title.

axes

the GDA dimensions to plot.

group

vector containing group definition.

group_names

names of the groups.

group_style

style to plot (vector containing "shape", "colour" or "both).

textsize

size of the text.

colour_palette

name of the used colour palette.

individuals

show individual points/ biplot (boolean).

individuals_size

set individual point size manual or "auto".

individuals_alpha

set alpha value.

individuals_names

plot individual names (boolean).

plot_modif_rates

plot modified rates instead of eigenvalue percentage (boolean).

axis_lab_name

name of axis label.

group_lab_name

name of variable groups.

labels

label axes (vector of length 4; left, right, top, bottom).

xlim

x Axis limits (vector of length 2).

ylim

y Axis limits (vector of length 2).

alpha

numeric value between 0 and 1.

Value

ggplot2 visualization containing selected modalities.


Visualize specific contributing modalities.

Description

Visualize specific contributing modalities.

Usage

fviz_gda_var_axis(
  res_gda,
  axis = 1,
  contrib = "auto",
  title = NULL,
  axes = 1:2,
  group = NULL,
  group_names = NULL,
  group_style = "both",
  textsize = 4,
  colour_palette = "Set1",
  individuals = FALSE,
  individuals_size = "auto",
  individuals_alpha = 0.5,
  individuals_names = FALSE,
  plot_modif_rates = TRUE,
  axis_lab_name = "Achse",
  group_lab_name = "Themengruppen",
  labels = NULL,
  xlim = NULL,
  ylim = NULL,
  alpha = 1
)

Arguments

res_gda

GDA result data frame.

axis

dimension to be filtered.

contrib

"auto" calculates the optimal modalities to show (based on the basic criterion). Otherwise define an amount of modalities to plot.

title

plot title.

axes

the GDA dimensions to plot.

group

vector containing group definition.

group_names

names of the groups.

group_style

style to plot (vector containing "shape", "colour" or "both).

textsize

size of the text.

colour_palette

name of the used colour palette.

individuals

show individual points/ biplot (boolean).

individuals_size

set individual point size manual or "auto".

individuals_alpha

set alpha value.

individuals_names

plot individual names (boolean).

plot_modif_rates

plot modified rates instead of eigenvalue percentage (boolean).

axis_lab_name

name of axis label.

group_lab_name

name of variable groups.

labels

label axes (vector of length 4; left, right, top, bottom).

xlim

x Axis limits (vector of length 2).

ylim

y Axis limits (vector of length 2).

alpha

numeric value between 0 and 1.

Value

ggplot2 visualization containing selected modalities.


Visualize MCA variable representation square.

Description

Visualize MCA variable representation square.

Usage

fviz_mca_var_corr(
  res_gda,
  axes = c(1, 2),
  geom = c("point", "text"),
  labelsize = 4,
  pointsize = 2,
  invisible = NULL,
  labels = TRUE,
  repel = TRUE,
  select = list(name = NULL, eta2 = NULL),
  plot_modif_rates = TRUE,
  title = "MCA - Variable Representation"
)

Arguments

res_gda

MCA result.

axes

axes to plot.

geom

whether points or labels to plot.

labelsize

size of labels.

pointsize

size of points.

invisible

hide "passive" or "active" variables.

labels

label points or not (boolean).

repel

repel labels (boolean).

select

selection of variables (names) or eta2 values (all above value).

plot_modif_rates

plot modified rates instead of eigenvalue percentage (boolean).

title

plot title.

Value

ggplot2 visualization of variable correlation square (variables representation).


Calculate axis contributions.

Description

Calculate axis contributions.

Usage

gda_describe_axis(res_gda, axis = 1, contrib = "auto")

Arguments

res_gda

MCA result.

axis

which axis to calculate.

contrib

"auto" calculates the optimal modalities to show (based on the basic criterion). Otherwise define an amount of modalities to plot.

Value

list containing axis contribution results.


Calculate group contributions.

Description

Calculate group contributions.

Usage

gda_describe_group(res_gda, group = NULL, group_names = NULL)

Arguments

res_gda

MCA result.

group

vector containing group definition.

group_names

names of the groups.

Value

list containing group results.


Optimise data frame for Geometric Data Analysis

Description

Optimise data frame for Geometric Data Analysis

Usage

gda_optimise_df(df_name, mod_excl = NA, prop_na_excl = 0.2, rename_na = FALSE)

Arguments

df_name

name of the data frame to optimise.

mod_excl

specify, which modalities should excluded.

prop_na_excl

overall level to exclude specified modalities.

rename_na

rename NA with label

Value

optimised data frame.


Extract trajectory data.

Description

Extract trajectory data.

Usage

get_gda_trajectory(res_gda, time_point_names = NULL, complete_obs = FALSE)

Arguments

res_gda

GDA result.

time_point_names

name of the separated time points.

complete_obs

plot only complete observations (boolean).

Value

list containing time point separated ind coord and time point names.


Exctract index of specific modalities.

Description

Exctract index of specific modalities.

Usage

get_index_mod(df_gda, pattern = "Fehlender Wert")

Arguments

df_gda

GDA optimised data frame.

pattern

search pattern (regular expression).

Value

indices of modalities.


Reshapes MCA results.

Description

Reshapes MCA results.

Usage

get_mca_var_corr(res_mca, axes = 1:2)

Arguments

res_mca

MCA result.

axes

axes selection.

Value

data frame with MCA variable names, types, coords and eta2 values.


Extract the corresponding group id of MFA variable categories.

Description

Extract the corresponding group id of MFA variable categories.

Usage

get_mfa_mod_group_id(res_mfa)

Arguments

res_mfa

MFA result.

Value

vector containing group ids in MFA result order.


Extract coords of categories to concat.

Description

Extract coords of categories to concat.

Usage

get_path_coord(res_gda_quali, var, var_levels = NULL, exclude = NULL)

Arguments

res_gda_quali

GDA result.

var

variable names.

var_levels

variable categories to concat.

exclude

categories to exclude.

Value

data frame with path coords.


Reshape place chronology data.

Description

Reshape place chronology data.

Usage

get_places_chronology(
  data,
  id = "all",
  weekday = "all",
  title,
  exclude_sleep = TRUE
)

Arguments

data

a data frame, which contains place chronology data.

id

vector, which contains questionnaiere ids.

weekday

vector, which contains a day selection.

title

specify plot title.

exclude_sleep

exclude sleep duration (boolean).

Value

reshaped data frame for further visualization.


Reshpape place chronology time pattern data.

Description

Reshpape place chronology time pattern data.

Usage

get_places_chronology_time_pattern(oc_data, id = "all", weekday = "all")

Arguments

id

vector, which contains questionnaire ids. Use "all" if you want to plot all ids.

weekday

vector, which contains days to plot.

data

data frame, which contains place chronology time pattern data.

Value

reshaped data frame for further visualization.


Reshape time pattern data.

Description

Reshape time pattern data.

Usage

get_time_pattern(data, id = "all", reshape_data = TRUE)

Arguments

data

data frame which contains time pattern data.

id

vector which contains questionnaire ids.

reshape_data

whether reshape data or not. Use this option if your data is column wise concentration (e. g. "mo_seminar")

Value

reshaped data frame for further visualization.


Reshape time pattern profile data frame.

Description

Reshape time pattern profile data frame.

Usage

get_time_pattern_profile(data_tp, id = "all")

Arguments

data_tp

data frame containing questionnaire_id, kml3d results and time pattern data.

id

time pattern number.

Value

Reshaped data frame.


Reshape time pattern series data.

Description

Reshape time pattern series data.

Usage

get_time_pattern_series(data_tp)

Arguments

data_tp

data frame including questionnaire_id, kml3d results and time pattern data.

Value

Reshaped data frame.


Calculate modified rates

Description

Calculate modified rates

Usage

modified_rates(mca_res)

Arguments

mca_res

FactoMineR MCA object.

Value

Modified rates as tibble.


Visualize a barplot.

Description

Visualize a barplot.

Usage

plot_barplot(
  df_origin,
  df_var,
  sort = FALSE,
  bar_abs_size = 3.5,
  bar_rel_size = 3,
  axes_rel_small = 0.6,
  show_missing = TRUE,
  digits = 1,
  flip = FALSE
)

Arguments

df_origin

source data farme (tibble).

df_var

categorical variable name.

sort

sort bars (boolean).

bar_abs_size

size of absolute values in plot.

bar_rel_size

size of relative values in plot.

axes_rel_small

relative value for small axes text (labels, titles …).

show_missing

include missing values in plot or not (boolean).

digits

amount of label value digits.

flip

flip axes (boolean).

Value

ggplot2 barplot.


Plot single or multiple place chronologies in different scales.

Description

Plot single or multiple place chronologies in different scales.

Usage

plot_places_chronology(
  data,
  id,
  weekday = "all",
  size_range = NULL,
  colour_path = "black",
  size_path = 2,
  alpha_path = 0.25,
  alpha_points = 0.85,
  linetype_path = "solid",
  force_repel = 3,
  title = NULL,
  axis_label = FALSE,
  xlim = NULL,
  ylim = NULL,
  xextra = 3,
  print_place_duration = TRUE,
  point_padding = unit(1, "lines"),
  exclude_sleep = TRUE,
  facets = FALSE
)

Arguments

data

a data frame (columns: ID, day, duration, place, address, lon, lat, prop_duration).

id

vector, which contains questionnaire ids. Choosa "all" to compute all ids.

weekday

vector, which contains the weekday to plot.

size_range

specify the size for visualizatipn of duration.

colour_path

sepcify the path line colour.

size_path

specify the path line size.

alpha_path

specify the path line alpha value [0:1].

alpha_points

specify the point alpha value [0:1].

linetype_path

specify the linetype of the path line.

force_repel

specify how heavy the repel algorithmn should be.

title

title of the plot.

axis_label

show or hide axis labels (boolean).

xlim

specify plot x limits.

ylim

specify plot y limits.

xextra

extra space for time plot (units in cm).

print_place_duration

print place overall duration (hours).

point_padding

Amount of padding around labeled point. Defaults to unit(0, "lines").

exclude_sleep

exclude sleep duration (boolean).

facets

plot facets (boolean).

Value

ggplot2 visualization of place chronology data.


Plot place chronologies map structure and zoom in.

Description

Plot place chronologies map structure and zoom in.

Usage

plot_places_chronology_meaning(
  data,
  id,
  weekday = "all",
  size_range = NULL,
  colour_path = "black",
  size_path = 2,
  alpha_path = 0.25,
  alpha_points = 1,
  linetype_path = "solid",
  title = NULL,
  axis_label = FALSE,
  print_place_duration = TRUE,
  exclude_sleep = TRUE,
  facets = FALSE,
  facets_include_place = NULL,
  facets_include_all = FALSE,
  exclude_na = FALSE,
  exclude = NULL,
  exclude_meaning = NULL,
  meanings = NULL,
  map = FALSE,
  map_zoom = 10,
  map_add_x = 0.2,
  map_add_y = 0.1,
  graph = TRUE,
  area_fill = "white",
  area_colour = "black",
  area_alpha = 0,
  area_size = 1.5,
  con_size = 5,
  area_linetype = "solid",
  area_expand = 0.5,
  area_label_fontsize = c(12, 10),
  area_buffer = 10,
  map_scalebar = TRUE,
  map_scalebar_location = "topright",
  map_scalebar_text_size = 4.5,
  map_scalebar_box_size = 0.015,
  map_scalebar_border_size = 0.85,
  map_scalebar_dist = 1,
  map_scalebar_text_dist = 0.02,
  map_scalebar_unit_pos_dist = 0.5
)

Arguments

data

a data frame (columns: ID, day, duration, place, address, lon, lat, prop_duration).

id

vector, which contains questionnaire ids. Choose "all" to compute all ids.

weekday

vector, which contains the weekday to plot.

size_range

specify the size for visualizatipn of duration.

colour_path

sepcify the path line colour.

size_path

specify the path line size.

alpha_path

specify the path line alpha value [0:1].

alpha_points

specify the point alpha value [0:1].

linetype_path

specify the linetype of the path line.

title

title of the plot.

axis_label

show or hide axis labels (boolean).

print_place_duration

print place overall duration (hours).

exclude_sleep

exclude sleep duration (boolean).

facets

plot facets (boolean).

facets_include_place

explicit include places in facets (vector).

facets_include_all

include all place names in facet plot (boolean).

exclude_na

drop NA places (boolean).

exclude

exclude specific places from the plot (vector).

exclude_meaning

meanings to be excluded (vector).

meanings

give places a meaning for grouping (vector).

map

use map background (boolean).

map_zoom

map zoom level.

map_add_x

adjust map x area.

map_add_y

adjust map y area.

graph

plot graph (boolean).

area_fill

fill colour of meaning area.

area_colour

line colour of meaning area.

area_alpha

alpha of meaning area.

area_size

size of meaning area.

con_size

size of the label connector (numeric).

area_linetype

linetype of meaning area.

area_expand

size of the area expand (numeric).

area_label_fontsize

area label fontsize (vector).

area_buffer

The size of the region around the mark where labels cannot be placed (in mm).

map_scalebar

show a scale bar (boolean).

map_scalebar_location

location of the scalebar.

map_scalebar_text_size

size of the scale text.

map_scalebar_box_size

size of the box.

map_scalebar_border_size

size of the border.

map_scalebar_dist

displayed disctance.

map_scalebar_text_dist

distance between box and text.

map_scalebar_unit_pos_dist

add space between scalebar values and unit.

Value

ggplot2 visualization of place chronology data.


Plot place chronologies activity paths.

Description

Plot place chronologies activity paths.

Usage

plot_places_chronology_path(
  data,
  id,
  recodeded_places = NULL,
  recode_week = c(`Woche 4` = "5", `Woche 3` = "4", `Woche 2` = "3", `Woche 1` = "2")
)

Arguments

data

a data frame (columns: ID, day, duration, place, address, lon, lat, prop_duration).

id

vector, which contains questionnaire ids. Choose "all" to compute all ids.

recodeded_places

recode leves of place labels by named vector.

week

recode leves of week labels by named vector.

Value

ggplot2 visualization of place chronology path.


Plot place chronology time pattern data.

Description

Plot place chronology time pattern data.

Usage

plot_places_chronology_time_pattern(
  data,
  id = "all",
  weekday = "all",
  graph = TRUE,
  print_prop_duration = TRUE,
  legend = TRUE,
  bar_width = 1,
  ncol = 3,
  labels = NULL,
  facet_label = TRUE,
  legend_bottom = TRUE,
  legend_cols = 2
)

Arguments

data

data frame, which contains place chronology time pattern data.

id

vector, which contains questionnaire ids. Use "all" if you want to plot all ids.

weekday

weekday vector, which contains days to plot.

graph

whether to plot or not to plot the praph (boolean)

print_prop_duration

whether to print or not to print prop duration data.

legend

show or hide legends (boolean).

bar_width

specify the width of the bars.

ncol

number of cols, if there are multiple plots (facets).

labels

facet labels.

facet_label

show facets (boolean).

legend_bottom

show legend on bottom (boolean).

legend_cols

number of legend cols (numeric).

Value

ggplot2 visualization of place chronology time pattern data.


Plot single or multiple time pattern.

Description

Plot single or multiple time pattern.

Usage

plot_time_pattern(
  data,
  id = "all",
  ncol = 4,
  reshape_data = TRUE,
  print_prop_duration = TRUE,
  fluid = FALSE,
  labels = NULL,
  legend = TRUE,
  facet = TRUE
)

Arguments

data

data frame which contains time pattern data.

id

vector which contains questionnaire ids.

ncol

number of cols, if there are multiple plots (facets).

reshape_data

whether reshape data or not.

print_prop_duration

whether to print or not to print prop duration data (boolean).

fluid

should be static bars or fluid lines visualized (boolean).

labels

facet labels.

legend

show legend (boolean).

facet

plot facets (boolean).

Value

ggplot2 visualization of time pattern data.


Plot average time pattern profiles.

Description

Plot average time pattern profiles.

Usage

plot_time_pattern_profile(data_tp, id = "all", ncol = 4, fluid = FALSE)

Arguments

data_tp

data frame containing questionnaire_id, kml3d results and time pattern data.

id

time pattern to plot.

ncol

facet columns.

fluid

should be static bars or fluid lines visualized (boolean).

Value

ggplot2 avgerage time pattern profile plot.


Plot time pattern series data.

Description

Plot time pattern series data.

Usage

plot_time_pattern_series(
  data_tp,
  alpha = 0.3,
  individual_lines = FALSE,
  title = "Time pattern profiles (kml3d results)",
  hour_limits = c(0, 24),
  hour_scale = c(0, 4, 8, 12)
)

Arguments

data_tp

data frame including questionnaire_id, kml3d results and time pattern data.

alpha

opacity of the time pattern lines.

individual_lines

show individual time pattern lines (boolean).

title

plot title.

hour_limits

y axis limits (hours).

hour_scale

y axis breaks (hours).

Value

ggplot2 time pattern series plot.


Calculate crossed variables double breakdown of variance.

Description

Calculate crossed variables double breakdown of variance.

Usage

supvar_crossing_stats(
  res_gda,
  var_quali_df,
  var_quali,
  impute = TRUE,
  axes = 1:2
)

Arguments

res_gda

MCA result.

var_quali_df

the supplementary data frame.

var_quali

crossed supplementary variable (vector separated by "_").

impute

impute missing data (boolean).

axes

the GDA dimensions to calculate double breakdown of variance.

Value

Returns a list:

var

double breakdown of variance.

reg

result of linear regressions.


Calculate results for supplementary variables.

Description

Calculate results for supplementary variables.

Usage

supvar_stats(res_gda, var_quali_df, var_quali, impute = TRUE, impute_ncp = 2)

Arguments

res_gda

GDA result.

var_quali_df

the supplementary data frame.

var_quali

supplementary variable name (string).

impute

impute missing data (boolean).

impute_ncp

number of dimensions to predict missing values.

Value

Returns a list:

weight

numeric vector of categories weights

cord

data frame of categories coordinates

cos2

data frame of categories square cosine

var

data frame of categories within variances, variance between and within categories and variable square correlation ratio (eta2)

v.test

data frame of categories test-values

supvar

vector of the supplementary variable categories