Title: | Statistical tools for time-space analysis |
---|---|
Description: | Use Geometric Data Analysis approaches (e.g. MCA or MFA), time pattern analysis (see "time sequence clustering") and places chronologies (see "time geography") analysis. |
Authors: | Fabian Mundt |
Maintainer: | Fabian Mundt <[email protected]> |
License: | AGPL (>= 3) | file LICENSE |
Version: | 2.0.6 |
Built: | 2025-03-09 15:18:18 UTC |
Source: | https://github.com/inventionate/TimeSpaceAnalysis |
Concat the categories of a variable
add_path( res_gda_quali, var, var_levels = NULL, exclude = NULL, axes = 1:2, linetype = "dashed", colour = "black", size = 1 )
add_path( res_gda_quali, var, var_levels = NULL, exclude = NULL, axes = 1:2, linetype = "dashed", colour = "black", size = 1 )
res_gda_quali |
GDA result. |
var |
variable name. |
var_levels |
categories to concat. |
exclude |
categories to exclude. |
axes |
axes to plot. |
linetype |
linetype of concat path. |
colour |
colour of concat path. |
size |
size of concat path. |
ggplo2 path geom.
Optimise ggplot2 plot.
add_theme(plot, font_family = "Fira Sans Condensed Medium")
add_theme(plot, font_family = "Fira Sans Condensed Medium")
plot |
ggplot2 object. |
font_family |
plot overall font family. |
ggplot2 geoms.
Extract list of MFA group indices to exclude (for sMFA).
excl_mfa_group(df_mfa, group_mfa, pattern)
excl_mfa_group(df_mfa, group_mfa, pattern)
df_mfa |
MFA optmised data frame. |
group_mfa |
MFA group definition. |
pattern |
search pattern (regular expression). |
list with MFA group specific exclude indices.
Extract legends form ggplot2 objects.
extract_legend(p)
extract_legend(p)
p |
ggplot2 object (plot) containing legends (guides). |
plottable legend grob.
Add supplementary individuals.
fviz_add_sup_ind( res_gda, sup_ind = NULL, colour = "red", ind_visible = FALSE, label = NULL, size = 10, group = NULL, group_names = NULL, group_style = "both", axes = 1:2 )
fviz_add_sup_ind( res_gda, sup_ind = NULL, colour = "red", ind_visible = FALSE, label = NULL, size = 10, group = NULL, group_names = NULL, group_style = "both", axes = 1:2 )
res_gda |
MCA results. |
sup_ind |
supplementary individual profiles (data.frame). |
colour |
colour of point and labels. |
ind_visible |
show individual points. |
label |
label names. |
size |
label size. |
group |
vector containing group definition. |
group_names |
names of the groups. |
group_style |
style to plot (vector containing "shape", "colour" or "both). |
axes |
the GDA dimensions to plot. |
ggplot2 visalization of supplementary individuals.
Visualize HCPC hclus trees.
fviz_dendrogram( res_hcpc, palette = NULL, cluster = 1, labels = FALSE, circle = FALSE, hline = 0.8, pointsize = 2, linetype = "dashed", cut_height = NULL, title = NULL, cut_upper = NULL, colour_upper = "#555555", hlabel = NULL, hlabel_pos = 0.001 )
fviz_dendrogram( res_hcpc, palette = NULL, cluster = 1, labels = FALSE, circle = FALSE, hline = 0.8, pointsize = 2, linetype = "dashed", cut_height = NULL, title = NULL, cut_upper = NULL, colour_upper = "#555555", hlabel = NULL, hlabel_pos = 0.001 )
res_hcpc |
(s)HCPC results. |
palette |
colour definition per cluster. |
cluster |
amount of clusters. |
labels |
plot labels (boolean). |
circle |
plot circle (boolean). |
hline |
hline height. |
pointsize |
leaves pointsize. |
linetype |
hline linetype. |
cut_height |
cut dendrogram at specific hight. |
title |
the plot title. |
cut_upper |
style upper dendrogram. |
colour_upper |
colour of the upper dendrogram. |
hlabel |
label of hline. |
hlabel_pos |
position of hlabel. |
ggplot2 dendrogram visualization.
Title
fviz_gda_conc_ellipse( res_gda, level = 0.8647, alpha = 0.1, colour = "black", linetype = "dotted", density = FALSE, fill = NA, axes = 1:2, scale_size = 1, title = "GDA individuals plot", plot_modif_rates = TRUE, axis_lab_name = "Achse", labels = NULL, xlim = NULL, ylim = NULL, blank = FALSE )
fviz_gda_conc_ellipse( res_gda, level = 0.8647, alpha = 0.1, colour = "black", linetype = "dotted", density = FALSE, fill = NA, axes = 1:2, scale_size = 1, title = "GDA individuals plot", plot_modif_rates = TRUE, axis_lab_name = "Achse", labels = NULL, xlim = NULL, ylim = NULL, blank = FALSE )
res_gda |
GDA result. |
level |
ellipse level (default 86.47%). |
alpha |
opacity level (default 0.1). |
colour |
ellipse border colour. |
linetype |
ellipse edge linetype. |
density |
show density contours (boolean). |
fill |
ellipse fill colour. |
axes |
the GDA dimensions to plot. |
scale_size |
scale minimal point size. |
title |
the plot title. |
plot_modif_rates |
plot modified rates instead of eigenvalue percentage (boolean). |
axis_lab_name |
name of axis label. |
labels |
label axes (vector of length 4; left, right, top, bottom). |
xlim |
x Axis limits (vector of length 2). |
ylim |
y Axis limits (vector of length 2). |
blank |
visualisation without labels and tick values. |
ggplot2 GDA visualisation with concentration ellipse.
Visualize interaction cloud.
fviz_gda_interaction( res_gda, df_var_quali, var_quali, title = "MCA quali interaction effects", mean_alpha = 0.75, path_linetype = "solid", path_size = 1, path_colour = "black", scale_mean_points = TRUE, axes = 1:2, palette = "Set1", path_alpha = 1, impute = TRUE, variable = "both", plot_modif_rates = TRUE, axis_lab_name = "Achse", labels = NULL )
fviz_gda_interaction( res_gda, df_var_quali, var_quali, title = "MCA quali interaction effects", mean_alpha = 0.75, path_linetype = "solid", path_size = 1, path_colour = "black", scale_mean_points = TRUE, axes = 1:2, palette = "Set1", path_alpha = 1, impute = TRUE, variable = "both", plot_modif_rates = TRUE, axis_lab_name = "Achse", labels = NULL )
res_gda |
MCA result. |
df_var_quali |
crossed variable data frame. |
var_quali |
name of crossed supplementary variable. |
title |
plot title. |
mean_alpha |
alpha of the mean point. |
path_linetype |
linetype of concat path. |
path_size |
size of concat path. |
path_colour |
colour of concat path. |
scale_mean_points |
scale mean points (boolean). |
axes |
axes to plot. |
palette |
used colour brewer palette. |
path_alpha |
opacity of the path. |
impute |
use imputation to handle missing data. |
variable |
which diagram to plot (vector containing 1, 2 or "both"). |
plot_modif_rates |
plot modified rates instead of eigenvalue percentage (boolean). |
axis_lab_name |
name of axis label. |
labels |
label axes (vector of length 4; left, right, top, bottom). |
ggplot2 interaction cloud visualizsation.
Title
fviz_gda_quali_ellipses( res_gda, df_var_quali, var_quali, title = NULL, facet = TRUE, alpha_point = 0.75, conc_linetype = "solid", conf_linetype = "solid", scale_mean_points = TRUE, axes = 1:2, colour = "Set1", impute = TRUE, concentration_ellipses = TRUE, confidence_ellipses = FALSE, conf_colour = FALSE, plot_modif_rates = TRUE, ncol = 3, individuals = TRUE, impute_ncp = 2, reorder = NULL, alpha_ellipses = 0.15, print_eta2 = TRUE, axis_lab_name = "Achse", label_mean_points = TRUE, highlight = FALSE, profiles = NULL, labels = NULL, axes_annotate_alpha = 0.3, density = FALSE, global_conc_ellipses = TRUE, in_freq = FALSE, facet_title_size = 14 )
fviz_gda_quali_ellipses( res_gda, df_var_quali, var_quali, title = NULL, facet = TRUE, alpha_point = 0.75, conc_linetype = "solid", conf_linetype = "solid", scale_mean_points = TRUE, axes = 1:2, colour = "Set1", impute = TRUE, concentration_ellipses = TRUE, confidence_ellipses = FALSE, conf_colour = FALSE, plot_modif_rates = TRUE, ncol = 3, individuals = TRUE, impute_ncp = 2, reorder = NULL, alpha_ellipses = 0.15, print_eta2 = TRUE, axis_lab_name = "Achse", label_mean_points = TRUE, highlight = FALSE, profiles = NULL, labels = NULL, axes_annotate_alpha = 0.3, density = FALSE, global_conc_ellipses = TRUE, in_freq = FALSE, facet_title_size = 14 )
res_gda |
GDA (MCA, MFA) result (rownames have to be individual questionnaire IDs). |
df_var_quali |
data frame of one quali variable. |
var_quali |
name if quali variable. |
title |
plot title. |
facet |
whether facet ellipses or not (boolean). |
alpha_point |
opacity of individual points. |
conc_linetype |
linetype of concentration ellipses. |
conf_linetype |
linetype of confidence ellipses. |
scale_mean_points |
scale mean point size in respect of the group size (boolean). |
axes |
the GDA dimensions to plot. |
colour |
Colour brewer scale or FALSE. |
impute |
impute missing data (boolean). |
concentration_ellipses |
plot concentration ellipse (boolean). |
confidence_ellipses |
plot confidence ellipses (boolean). |
conf_colour |
colour confidence ellipses (boolean). |
plot_modif_rates |
plot modified rates instead of eigenvalue percentage (boolean). |
ncol |
Number of facet columns. |
individuals |
show individual points (boolean). |
impute_ncp |
number of dimensions to predict missing values. |
reorder |
numeric vector containing new level order (index). |
alpha_ellipses |
concentration ellipses fill alpha. |
print_eta2 |
print eta2 value per axis (boolean). |
axis_lab_name |
name of axis label. |
label_mean_points |
show labels (boolean). |
highlight |
show facets with highlighted group (boolean). |
profiles |
optional add specific profiles (tibble). |
labels |
label axes (vector of length 4; left, right, top, bottom). |
axes_annotate_alpha |
alpha value of axes annotations. |
density |
show density contours (boolean). |
global_conc_ellipses |
should the global concentration ellipse be shown (boolean). |
in_freq |
order by number of observations with each level (largest first) (boolean). |
facet_title_size |
size of the facet stripe title (numeric). |
ggplot2 visualization with concentration and quali var ellipses.
Visualize supplementary variables.
fviz_gda_quali_supvar( res_gda, df_var_quali, var_quali, title = NULL, path = FALSE, linetype = "solid", axes = 1:2, scale_point = TRUE, size_point = 3, scale_text = FALSE, size_text = 3, palette = "Set1", impute = TRUE, plot_modif_rates = TRUE, impute_ncp = 2, relevel = NULL, print_eta2 = TRUE, axis_lab_name = "Achse", axes_annotate_alpha = 0.3, labels = NULL, xlim = NULL, ylim = NULL, accuracy = 0.1, pos_adjust = 0.001, colour_point = FALSE )
fviz_gda_quali_supvar( res_gda, df_var_quali, var_quali, title = NULL, path = FALSE, linetype = "solid", axes = 1:2, scale_point = TRUE, size_point = 3, scale_text = FALSE, size_text = 3, palette = "Set1", impute = TRUE, plot_modif_rates = TRUE, impute_ncp = 2, relevel = NULL, print_eta2 = TRUE, axis_lab_name = "Achse", axes_annotate_alpha = 0.3, labels = NULL, xlim = NULL, ylim = NULL, accuracy = 0.1, pos_adjust = 0.001, colour_point = FALSE )
res_gda |
GDA result. |
df_var_quali |
crossed variable data frame. |
var_quali |
crossed variable name. |
title |
plot title. |
path |
plot path (boolean). |
linetype |
specify path linetype. |
axes |
which axes should be plotted. |
scale_point |
scale points by weight (boolean). |
size_point |
define point size. |
scale_text |
scale text by weight (boolean). |
size_text |
define text size. |
palette |
RColorBrewer palette. |
impute |
impute missing data (boolean). |
plot_modif_rates |
plot modified rates instead of eigenvalue percentage (boolean). |
impute_ncp |
number of dimensions to predict missing values. |
relevel |
character vector containing new level order. |
print_eta2 |
print eta2 value per axis (boolean). |
axis_lab_name |
name of axis label. |
axes_annotate_alpha |
alpha value of axes annotations. |
labels |
label axes (vector of length 4; left, right, top, bottom). |
xlim |
x Axis limits (vector of length 2). |
ylim |
y Axis limits (vector of length 2). |
accuracy |
numeric vector (defaults to 0.1). |
pos_adjust |
numeric vector for axis labels adjustment (defaults to 0.001) |
colour_point |
should the points be coloured (boolean)? |
ggplot2 visualization of supplementary variables.
Visualize additive cloud.
fviz_gda_structure( res_gda, df_var_quali, var_quali, title = NULL, scale_mean_points = TRUE, axes = 1:2, palette = "Set1", impute = TRUE, cloud = "both", plot_modif_rates = TRUE, axis_lab_name = "Achse", labels = NULL, axes_annotate_alpha = 0.3 )
fviz_gda_structure( res_gda, df_var_quali, var_quali, title = NULL, scale_mean_points = TRUE, axes = 1:2, palette = "Set1", impute = TRUE, cloud = "both", plot_modif_rates = TRUE, axis_lab_name = "Achse", labels = NULL, axes_annotate_alpha = 0.3 )
res_gda |
MCA result. |
df_var_quali |
crossed variable data frame. |
var_quali |
name of quali variable. |
title |
plot title. |
scale_mean_points |
scale points (boolean). |
axes |
which axis to plot. |
palette |
colour palette (boolean). |
impute |
impute missing data (boolean). |
cloud |
which cloud should be plotted (string: real, fitted, both, deviation) |
plot_modif_rates |
plot modified rates instead of eigenvalue percentage (boolean). |
axis_lab_name |
name of axis label. |
labels |
label axes (vector of length 4; left, right, top, bottom). |
axes_annotate_alpha |
alpha value of axes annotations. |
ggplot2 visualization of additive cloud.
Visualization of trajectories (connected active and passive individual points).
fviz_gda_trajectory( res_gda, select = list(name = NULL, within_inertia = NULL, case = NULL), title = NULL, axes = 1:2, ind_labels = FALSE, time_point_names = NULL, plot_modif_rates = TRUE, axis_lab_name = "Achse", labels = NULL, legend_x = 0.12, legend_y = 0.9, axes_annotate_alpha = 0.3, xlim = NULL, ylim = NULL )
fviz_gda_trajectory( res_gda, select = list(name = NULL, within_inertia = NULL, case = NULL), title = NULL, axes = 1:2, ind_labels = FALSE, time_point_names = NULL, plot_modif_rates = TRUE, axis_lab_name = "Achse", labels = NULL, legend_x = 0.12, legend_y = 0.9, axes_annotate_alpha = 0.3, xlim = NULL, ylim = NULL )
res_gda |
MCA result (rownames have to be questionnaire IDs including time number, e.g. 87654_1). |
select |
vector of names, within_inertia of individuals selection (within_inertia: vector containing the number of high variation and low variationindividuals) or case (vector containing NULL, complete, or incomplete). |
title |
the plot title |
axes |
axes to plot. |
ind_labels |
plot labels (boolean). |
time_point_names |
vector containing the name of the time points. |
plot_modif_rates |
plot modified rates instead of eigenvalue percentage (boolean). |
axis_lab_name |
name of axis label. |
labels |
label axes (vector of length 4; left, right, top, bottom). |
legend_x |
x position of legend. |
legend_y |
y position of legend. |
axes_annotate_alpha |
alpha value of axes annotations. |
xlim |
x Axis limits (vector of length 2). |
ylim |
y Axis limits (vector of length 2). |
trajectory ggplot2 visualization.
Visualization of trajectory structuring factor ellipses.
fviz_gda_trajectory_ellipses( res_gda, df_var_quali, var_quali, axes = 1:2, impute = TRUE, time_point_names = NULL, ind_points = TRUE, concentration_ellipse = TRUE, title = NULL, plot_modif_rates = TRUE, alpha = 0.15, select = NULL, select_facet = TRUE, labels = NULL, xlim = NULL, ylim = NULL, axes_annotate_alpha = 0.3, complete_obs = FALSE, facet_title_size = 14, density = FALSE, ellipses = TRUE )
fviz_gda_trajectory_ellipses( res_gda, df_var_quali, var_quali, axes = 1:2, impute = TRUE, time_point_names = NULL, ind_points = TRUE, concentration_ellipse = TRUE, title = NULL, plot_modif_rates = TRUE, alpha = 0.15, select = NULL, select_facet = TRUE, labels = NULL, xlim = NULL, ylim = NULL, axes_annotate_alpha = 0.3, complete_obs = FALSE, facet_title_size = 14, density = FALSE, ellipses = TRUE )
res_gda |
MCA result (rownames have to be questionnaire IDs including time number, e.g. 87654_1). |
df_var_quali |
data frame containing one qualitative variable (with IDs as rownames). |
var_quali |
name of the structuring variable. |
axes |
the axes to plot. |
impute |
use imputation for missing data. |
time_point_names |
vector containing the name of the time points. |
ind_points |
show individuals (boolean). |
concentration_ellipse |
plot concentration ellipses (boolean). |
title |
title of the plot. |
plot_modif_rates |
plot modified rates instead of eigenvalue percentage (boolean). |
alpha |
ellipse fill alpha. |
select |
choose cluster/category. |
select_facet |
facet clusters/categories (boolean.) |
labels |
label axes (vector of length 4; left, right, top, bottom). |
xlim |
x limits. |
ylim |
y limits. |
axes_annotate_alpha |
alpha value of axes annotations. |
complete_obs |
plot only complete observations (boolean). |
facet_title_size |
size of the facet stripe title (numeric). |
density |
should 2D density lines be drawn (boolean). |
ellipses |
should ellipses be drawn (boolean). |
ggplot2 visualization.
Visualize trajectories and structuring factors.
fviz_gda_trajectory_quali( res_gda, df_var_quali, var_quali, var_quali_select = NULL, axes = 1:2, ind_labels = FALSE, title = NULL, time_point_names = NULL, select = list(name = NULL, within_inertia = NULL, case = NULL), impute = TRUE, plot_modif_rates = TRUE, labels = NULL, xlim = NULL, ylim = NULL, axes_annotate_alpha = 0.3, case_names = NULL, label_x_limits = NA, label_y_limits = NA )
fviz_gda_trajectory_quali( res_gda, df_var_quali, var_quali, var_quali_select = NULL, axes = 1:2, ind_labels = FALSE, title = NULL, time_point_names = NULL, select = list(name = NULL, within_inertia = NULL, case = NULL), impute = TRUE, plot_modif_rates = TRUE, labels = NULL, xlim = NULL, ylim = NULL, axes_annotate_alpha = 0.3, case_names = NULL, label_x_limits = NA, label_y_limits = NA )
res_gda |
MCA result (rownames have to be questionnaire IDs including time number, e.g. 87654_1). |
df_var_quali |
data frame containing one qualitative variable (with IDs as rownames). |
var_quali |
name of the structuring variable. |
var_quali_select |
the name of the selected categories/clusters. |
axes |
the axes to plot. |
ind_labels |
plot labels (boolean). |
title |
the plot title. |
time_point_names |
vector containing the name of the time points. |
select |
select vector of names, within_inertia of individuals selection (within_inertia: vector containing the number of high variation and low variationindividuals) or case (vector containing NULL, complete, or incomplete). |
impute |
use imputation for missing data. |
plot_modif_rates |
plot modified rates instead of eigenvalue percentage (boolean). |
labels |
label axes (vector of length 4; left, right, top, bottom). |
xlim |
numeric vector of 2. |
ylim |
numeric vector of 2. |
axes_annotate_alpha |
alpha value of axes annotations. |
case_names |
named character vector containing names of cases. |
label_x_limits |
constrain the labels to a specific area. Limits are specified in data coordinates. |
label_y_limits |
constrain the labels to a specific area. Limits are specified in data coordinates. |
ggplot2 visualization.
Visualization of the separated concentration ellipses of the sample.
fviz_gda_trajectory_sample( res_gda, time_point_names = NULL, axes = 1:2, ind_points = TRUE, concentration_ellipse = TRUE, complete = TRUE, title = NULL, plot_modif_rates = TRUE, alpha = 0.15, axis_lab_name = "Achse", axes_annotate_alpha = 0.3, labels = NULL, legend_x = 0.12, legend_y = 0.9, xlim = NULL, ylim = NULL )
fviz_gda_trajectory_sample( res_gda, time_point_names = NULL, axes = 1:2, ind_points = TRUE, concentration_ellipse = TRUE, complete = TRUE, title = NULL, plot_modif_rates = TRUE, alpha = 0.15, axis_lab_name = "Achse", axes_annotate_alpha = 0.3, labels = NULL, legend_x = 0.12, legend_y = 0.9, xlim = NULL, ylim = NULL )
res_gda |
MCA result (rownames have to be questionnaire IDs including time number, e.g. 87654_1). |
time_point_names |
vector containing the name of the time points. |
axes |
the axes to plot. |
ind_points |
show individuals (boolean). |
concentration_ellipse |
show or hide overall concentration ellipse (boolean). |
complete |
plot only complete cases (boolean). |
title |
title of the plot |
plot_modif_rates |
plot modified rates instead of eigenvalue percentage (boolean). |
alpha |
ellipse fill alpha. |
axis_lab_name |
name of axis label. |
axes_annotate_alpha |
alpha value of axes annotations. |
labels |
label axes (vector of length 4; left, right, top, bottom). |
legend_x |
x position of legend. |
legend_y |
y position of legend. |
xlim |
x Axis limits (vector of length 2). |
ylim |
y Axis limits (vector of length 2). |
ggplot2 visualization.
Visualize specific contributing modalities in a plane.
fviz_gda_var( res_gda, contrib = "auto", title = NULL, axes = 1:2, group = NULL, group_names = NULL, group_style = "both", textsize = 4, colour_palette = "Set1", individuals = FALSE, individuals_size = "auto", individuals_alpha = 0.5, individuals_names = FALSE, plot_modif_rates = TRUE, axis_lab_name = "Achse", group_lab_name = "Themengruppen", labels = NULL, xlim = NULL, ylim = NULL, alpha = 1 )
fviz_gda_var( res_gda, contrib = "auto", title = NULL, axes = 1:2, group = NULL, group_names = NULL, group_style = "both", textsize = 4, colour_palette = "Set1", individuals = FALSE, individuals_size = "auto", individuals_alpha = 0.5, individuals_names = FALSE, plot_modif_rates = TRUE, axis_lab_name = "Achse", group_lab_name = "Themengruppen", labels = NULL, xlim = NULL, ylim = NULL, alpha = 1 )
res_gda |
GDA result data frame. |
contrib |
"auto" calculates the optimal modalities to show (based on the basic criterion). Otherwise define an amount of modalities to plot. |
title |
plot title. |
axes |
the GDA dimensions to plot. |
group |
vector containing group definition. |
group_names |
names of the groups. |
group_style |
style to plot (vector containing "shape", "colour" or "both). |
textsize |
size of the text. |
colour_palette |
name of the used colour palette. |
individuals |
show individual points/ biplot (boolean). |
individuals_size |
set individual point size manual or "auto". |
individuals_alpha |
set alpha value. |
individuals_names |
plot individual names (boolean). |
plot_modif_rates |
plot modified rates instead of eigenvalue percentage (boolean). |
axis_lab_name |
name of axis label. |
group_lab_name |
name of variable groups. |
labels |
label axes (vector of length 4; left, right, top, bottom). |
xlim |
x Axis limits (vector of length 2). |
ylim |
y Axis limits (vector of length 2). |
alpha |
numeric value between 0 and 1. |
ggplot2 visualization containing selected modalities.
Visualize specific contributing modalities.
fviz_gda_var_axis( res_gda, axis = 1, contrib = "auto", title = NULL, axes = 1:2, group = NULL, group_names = NULL, group_style = "both", textsize = 4, colour_palette = "Set1", individuals = FALSE, individuals_size = "auto", individuals_alpha = 0.5, individuals_names = FALSE, plot_modif_rates = TRUE, axis_lab_name = "Achse", group_lab_name = "Themengruppen", labels = NULL, xlim = NULL, ylim = NULL, alpha = 1 )
fviz_gda_var_axis( res_gda, axis = 1, contrib = "auto", title = NULL, axes = 1:2, group = NULL, group_names = NULL, group_style = "both", textsize = 4, colour_palette = "Set1", individuals = FALSE, individuals_size = "auto", individuals_alpha = 0.5, individuals_names = FALSE, plot_modif_rates = TRUE, axis_lab_name = "Achse", group_lab_name = "Themengruppen", labels = NULL, xlim = NULL, ylim = NULL, alpha = 1 )
res_gda |
GDA result data frame. |
axis |
dimension to be filtered. |
contrib |
"auto" calculates the optimal modalities to show (based on the basic criterion). Otherwise define an amount of modalities to plot. |
title |
plot title. |
axes |
the GDA dimensions to plot. |
group |
vector containing group definition. |
group_names |
names of the groups. |
group_style |
style to plot (vector containing "shape", "colour" or "both). |
textsize |
size of the text. |
colour_palette |
name of the used colour palette. |
individuals |
show individual points/ biplot (boolean). |
individuals_size |
set individual point size manual or "auto". |
individuals_alpha |
set alpha value. |
individuals_names |
plot individual names (boolean). |
plot_modif_rates |
plot modified rates instead of eigenvalue percentage (boolean). |
axis_lab_name |
name of axis label. |
group_lab_name |
name of variable groups. |
labels |
label axes (vector of length 4; left, right, top, bottom). |
xlim |
x Axis limits (vector of length 2). |
ylim |
y Axis limits (vector of length 2). |
alpha |
numeric value between 0 and 1. |
ggplot2 visualization containing selected modalities.
Visualize MCA variable representation square.
fviz_mca_var_corr( res_gda, axes = c(1, 2), geom = c("point", "text"), labelsize = 4, pointsize = 2, invisible = NULL, labels = TRUE, repel = TRUE, select = list(name = NULL, eta2 = NULL), plot_modif_rates = TRUE, title = "MCA - Variable Representation" )
fviz_mca_var_corr( res_gda, axes = c(1, 2), geom = c("point", "text"), labelsize = 4, pointsize = 2, invisible = NULL, labels = TRUE, repel = TRUE, select = list(name = NULL, eta2 = NULL), plot_modif_rates = TRUE, title = "MCA - Variable Representation" )
res_gda |
MCA result. |
axes |
axes to plot. |
geom |
whether points or labels to plot. |
labelsize |
size of labels. |
pointsize |
size of points. |
invisible |
hide "passive" or "active" variables. |
labels |
label points or not (boolean). |
repel |
repel labels (boolean). |
select |
selection of variables (names) or eta2 values (all above value). |
plot_modif_rates |
plot modified rates instead of eigenvalue percentage (boolean). |
title |
plot title. |
ggplot2 visualization of variable correlation square (variables representation).
Calculate axis contributions.
gda_describe_axis(res_gda, axis = 1, contrib = "auto")
gda_describe_axis(res_gda, axis = 1, contrib = "auto")
res_gda |
MCA result. |
axis |
which axis to calculate. |
contrib |
"auto" calculates the optimal modalities to show (based on the basic criterion). Otherwise define an amount of modalities to plot. |
list containing axis contribution results.
Calculate group contributions.
gda_describe_group(res_gda, group = NULL, group_names = NULL)
gda_describe_group(res_gda, group = NULL, group_names = NULL)
res_gda |
MCA result. |
group |
vector containing group definition. |
group_names |
names of the groups. |
list containing group results.
Optimise data frame for Geometric Data Analysis
gda_optimise_df(df_name, mod_excl = NA, prop_na_excl = 0.2, rename_na = FALSE)
gda_optimise_df(df_name, mod_excl = NA, prop_na_excl = 0.2, rename_na = FALSE)
df_name |
name of the data frame to optimise. |
mod_excl |
specify, which modalities should excluded. |
prop_na_excl |
overall level to exclude specified modalities. |
rename_na |
rename NA with label |
optimised data frame.
Extract trajectory data.
get_gda_trajectory(res_gda, time_point_names = NULL, complete_obs = FALSE)
get_gda_trajectory(res_gda, time_point_names = NULL, complete_obs = FALSE)
res_gda |
GDA result. |
time_point_names |
name of the separated time points. |
complete_obs |
plot only complete observations (boolean). |
list containing time point separated ind coord and time point names.
Exctract index of specific modalities.
get_index_mod(df_gda, pattern = "Fehlender Wert")
get_index_mod(df_gda, pattern = "Fehlender Wert")
df_gda |
GDA optimised data frame. |
pattern |
search pattern (regular expression). |
indices of modalities.
Reshapes MCA results.
get_mca_var_corr(res_mca, axes = 1:2)
get_mca_var_corr(res_mca, axes = 1:2)
res_mca |
MCA result. |
axes |
axes selection. |
data frame with MCA variable names, types, coords and eta2 values.
Extract the corresponding group id of MFA variable categories.
get_mfa_mod_group_id(res_mfa)
get_mfa_mod_group_id(res_mfa)
res_mfa |
MFA result. |
vector containing group ids in MFA result order.
Extract coords of categories to concat.
get_path_coord(res_gda_quali, var, var_levels = NULL, exclude = NULL)
get_path_coord(res_gda_quali, var, var_levels = NULL, exclude = NULL)
res_gda_quali |
GDA result. |
var |
variable names. |
var_levels |
variable categories to concat. |
exclude |
categories to exclude. |
data frame with path coords.
Reshape place chronology data.
get_places_chronology( data, id = "all", weekday = "all", title, exclude_sleep = TRUE )
get_places_chronology( data, id = "all", weekday = "all", title, exclude_sleep = TRUE )
data |
a data frame, which contains place chronology data. |
id |
vector, which contains questionnaiere ids. |
weekday |
vector, which contains a day selection. |
title |
specify plot title. |
exclude_sleep |
exclude sleep duration (boolean). |
reshaped data frame for further visualization.
Reshpape place chronology time pattern data.
get_places_chronology_time_pattern(oc_data, id = "all", weekday = "all")
get_places_chronology_time_pattern(oc_data, id = "all", weekday = "all")
id |
vector, which contains questionnaire ids. Use "all" if you want to plot all ids. |
weekday |
vector, which contains days to plot. |
data |
data frame, which contains place chronology time pattern data. |
reshaped data frame for further visualization.
Reshape time pattern data.
get_time_pattern(data, id = "all", reshape_data = TRUE)
get_time_pattern(data, id = "all", reshape_data = TRUE)
data |
data frame which contains time pattern data. |
id |
vector which contains questionnaire ids. |
reshape_data |
whether reshape data or not. Use this option if your data is column wise concentration (e. g. "mo_seminar") |
reshaped data frame for further visualization.
Reshape time pattern profile data frame.
get_time_pattern_profile(data_tp, id = "all")
get_time_pattern_profile(data_tp, id = "all")
data_tp |
data frame containing questionnaire_id, kml3d results and time pattern data. |
id |
time pattern number. |
Reshaped data frame.
Reshape time pattern series data.
get_time_pattern_series(data_tp)
get_time_pattern_series(data_tp)
data_tp |
data frame including questionnaire_id, kml3d results and time pattern data. |
Reshaped data frame.
Calculate modified rates
modified_rates(mca_res)
modified_rates(mca_res)
mca_res |
FactoMineR MCA object. |
Modified rates as tibble.
Visualize a barplot.
plot_barplot( df_origin, df_var, sort = FALSE, bar_abs_size = 3.5, bar_rel_size = 3, axes_rel_small = 0.6, show_missing = TRUE, digits = 1, flip = FALSE )
plot_barplot( df_origin, df_var, sort = FALSE, bar_abs_size = 3.5, bar_rel_size = 3, axes_rel_small = 0.6, show_missing = TRUE, digits = 1, flip = FALSE )
df_origin |
source data farme (tibble). |
df_var |
categorical variable name. |
sort |
sort bars (boolean). |
bar_abs_size |
size of absolute values in plot. |
bar_rel_size |
size of relative values in plot. |
axes_rel_small |
relative value for small axes text (labels, titles …). |
show_missing |
include missing values in plot or not (boolean). |
digits |
amount of label value digits. |
flip |
flip axes (boolean). |
ggplot2 barplot.
Plot single or multiple place chronologies in different scales.
plot_places_chronology( data, id, weekday = "all", size_range = NULL, colour_path = "black", size_path = 2, alpha_path = 0.25, alpha_points = 0.85, linetype_path = "solid", force_repel = 3, title = NULL, axis_label = FALSE, xlim = NULL, ylim = NULL, xextra = 3, print_place_duration = TRUE, point_padding = unit(1, "lines"), exclude_sleep = TRUE, facets = FALSE )
plot_places_chronology( data, id, weekday = "all", size_range = NULL, colour_path = "black", size_path = 2, alpha_path = 0.25, alpha_points = 0.85, linetype_path = "solid", force_repel = 3, title = NULL, axis_label = FALSE, xlim = NULL, ylim = NULL, xextra = 3, print_place_duration = TRUE, point_padding = unit(1, "lines"), exclude_sleep = TRUE, facets = FALSE )
data |
a data frame (columns: ID, day, duration, place, address, lon, lat, prop_duration). |
id |
vector, which contains questionnaire ids. Choosa "all" to compute all ids. |
weekday |
vector, which contains the weekday to plot. |
size_range |
specify the size for visualizatipn of duration. |
colour_path |
sepcify the path line colour. |
size_path |
specify the path line size. |
alpha_path |
specify the path line alpha value [0:1]. |
alpha_points |
specify the point alpha value [0:1]. |
linetype_path |
specify the linetype of the path line. |
force_repel |
specify how heavy the repel algorithmn should be. |
title |
title of the plot. |
axis_label |
show or hide axis labels (boolean). |
xlim |
specify plot x limits. |
ylim |
specify plot y limits. |
xextra |
extra space for time plot (units in cm). |
print_place_duration |
print place overall duration (hours). |
point_padding |
Amount of padding around labeled point. Defaults to unit(0, "lines"). |
exclude_sleep |
exclude sleep duration (boolean). |
facets |
plot facets (boolean). |
ggplot2 visualization of place chronology data.
Plot place chronologies map structure and zoom in.
plot_places_chronology_meaning( data, id, weekday = "all", size_range = NULL, colour_path = "black", size_path = 2, alpha_path = 0.25, alpha_points = 1, linetype_path = "solid", title = NULL, axis_label = FALSE, print_place_duration = TRUE, exclude_sleep = TRUE, facets = FALSE, facets_include_place = NULL, facets_include_all = FALSE, exclude_na = FALSE, exclude = NULL, exclude_meaning = NULL, meanings = NULL, map = FALSE, map_zoom = 10, map_add_x = 0.2, map_add_y = 0.1, graph = TRUE, area_fill = "white", area_colour = "black", area_alpha = 0, area_size = 1.5, con_size = 5, area_linetype = "solid", area_expand = 0.5, area_label_fontsize = c(12, 10), area_buffer = 10, map_scalebar = TRUE, map_scalebar_location = "topright", map_scalebar_text_size = 4.5, map_scalebar_box_size = 0.015, map_scalebar_border_size = 0.85, map_scalebar_dist = 1, map_scalebar_text_dist = 0.02, map_scalebar_unit_pos_dist = 0.5 )
plot_places_chronology_meaning( data, id, weekday = "all", size_range = NULL, colour_path = "black", size_path = 2, alpha_path = 0.25, alpha_points = 1, linetype_path = "solid", title = NULL, axis_label = FALSE, print_place_duration = TRUE, exclude_sleep = TRUE, facets = FALSE, facets_include_place = NULL, facets_include_all = FALSE, exclude_na = FALSE, exclude = NULL, exclude_meaning = NULL, meanings = NULL, map = FALSE, map_zoom = 10, map_add_x = 0.2, map_add_y = 0.1, graph = TRUE, area_fill = "white", area_colour = "black", area_alpha = 0, area_size = 1.5, con_size = 5, area_linetype = "solid", area_expand = 0.5, area_label_fontsize = c(12, 10), area_buffer = 10, map_scalebar = TRUE, map_scalebar_location = "topright", map_scalebar_text_size = 4.5, map_scalebar_box_size = 0.015, map_scalebar_border_size = 0.85, map_scalebar_dist = 1, map_scalebar_text_dist = 0.02, map_scalebar_unit_pos_dist = 0.5 )
data |
a data frame (columns: ID, day, duration, place, address, lon, lat, prop_duration). |
id |
vector, which contains questionnaire ids. Choose "all" to compute all ids. |
weekday |
vector, which contains the weekday to plot. |
size_range |
specify the size for visualizatipn of duration. |
colour_path |
sepcify the path line colour. |
size_path |
specify the path line size. |
alpha_path |
specify the path line alpha value [0:1]. |
alpha_points |
specify the point alpha value [0:1]. |
linetype_path |
specify the linetype of the path line. |
title |
title of the plot. |
axis_label |
show or hide axis labels (boolean). |
print_place_duration |
print place overall duration (hours). |
exclude_sleep |
exclude sleep duration (boolean). |
facets |
plot facets (boolean). |
facets_include_place |
explicit include places in facets (vector). |
facets_include_all |
include all place names in facet plot (boolean). |
exclude_na |
drop NA places (boolean). |
exclude |
exclude specific places from the plot (vector). |
exclude_meaning |
meanings to be excluded (vector). |
meanings |
give places a meaning for grouping (vector). |
map |
use map background (boolean). |
map_zoom |
map zoom level. |
map_add_x |
adjust map x area. |
map_add_y |
adjust map y area. |
graph |
plot graph (boolean). |
area_fill |
fill colour of meaning area. |
area_colour |
line colour of meaning area. |
area_alpha |
alpha of meaning area. |
area_size |
size of meaning area. |
con_size |
size of the label connector (numeric). |
area_linetype |
linetype of meaning area. |
area_expand |
size of the area expand (numeric). |
area_label_fontsize |
area label fontsize (vector). |
area_buffer |
The size of the region around the mark where labels cannot be placed (in mm). |
map_scalebar |
show a scale bar (boolean). |
map_scalebar_location |
location of the scalebar. |
map_scalebar_text_size |
size of the scale text. |
map_scalebar_box_size |
size of the box. |
map_scalebar_border_size |
size of the border. |
map_scalebar_dist |
displayed disctance. |
map_scalebar_text_dist |
distance between box and text. |
map_scalebar_unit_pos_dist |
add space between scalebar values and unit. |
ggplot2 visualization of place chronology data.
Plot place chronologies activity paths.
plot_places_chronology_path( data, id, recodeded_places = NULL, recode_week = c(`Woche 4` = "5", `Woche 3` = "4", `Woche 2` = "3", `Woche 1` = "2") )
plot_places_chronology_path( data, id, recodeded_places = NULL, recode_week = c(`Woche 4` = "5", `Woche 3` = "4", `Woche 2` = "3", `Woche 1` = "2") )
data |
a data frame (columns: ID, day, duration, place, address, lon, lat, prop_duration). |
id |
vector, which contains questionnaire ids. Choose "all" to compute all ids. |
recodeded_places |
recode leves of place labels by named vector. |
week |
recode leves of week labels by named vector. |
ggplot2 visualization of place chronology path.
Plot place chronology time pattern data.
plot_places_chronology_time_pattern( data, id = "all", weekday = "all", graph = TRUE, print_prop_duration = TRUE, legend = TRUE, bar_width = 1, ncol = 3, labels = NULL, facet_label = TRUE, legend_bottom = TRUE, legend_cols = 2 )
plot_places_chronology_time_pattern( data, id = "all", weekday = "all", graph = TRUE, print_prop_duration = TRUE, legend = TRUE, bar_width = 1, ncol = 3, labels = NULL, facet_label = TRUE, legend_bottom = TRUE, legend_cols = 2 )
data |
data frame, which contains place chronology time pattern data. |
id |
vector, which contains questionnaire ids. Use "all" if you want to plot all ids. |
weekday |
weekday vector, which contains days to plot. |
graph |
whether to plot or not to plot the praph (boolean) |
print_prop_duration |
whether to print or not to print prop duration data. |
legend |
show or hide legends (boolean). |
bar_width |
specify the width of the bars. |
ncol |
number of cols, if there are multiple plots (facets). |
labels |
facet labels. |
facet_label |
show facets (boolean). |
legend_bottom |
show legend on bottom (boolean). |
legend_cols |
number of legend cols (numeric). |
ggplot2 visualization of place chronology time pattern data.
Plot single or multiple time pattern.
plot_time_pattern( data, id = "all", ncol = 4, reshape_data = TRUE, print_prop_duration = TRUE, fluid = FALSE, labels = NULL, legend = TRUE, facet = TRUE )
plot_time_pattern( data, id = "all", ncol = 4, reshape_data = TRUE, print_prop_duration = TRUE, fluid = FALSE, labels = NULL, legend = TRUE, facet = TRUE )
data |
data frame which contains time pattern data. |
id |
vector which contains questionnaire ids. |
ncol |
number of cols, if there are multiple plots (facets). |
reshape_data |
whether reshape data or not. |
print_prop_duration |
whether to print or not to print prop duration data (boolean). |
fluid |
should be static bars or fluid lines visualized (boolean). |
labels |
facet labels. |
legend |
show legend (boolean). |
facet |
plot facets (boolean). |
ggplot2 visualization of time pattern data.
Plot average time pattern profiles.
plot_time_pattern_profile(data_tp, id = "all", ncol = 4, fluid = FALSE)
plot_time_pattern_profile(data_tp, id = "all", ncol = 4, fluid = FALSE)
data_tp |
data frame containing questionnaire_id, kml3d results and time pattern data. |
id |
time pattern to plot. |
ncol |
facet columns. |
fluid |
should be static bars or fluid lines visualized (boolean). |
ggplot2 avgerage time pattern profile plot.
Plot time pattern series data.
plot_time_pattern_series( data_tp, alpha = 0.3, individual_lines = FALSE, title = "Time pattern profiles (kml3d results)", hour_limits = c(0, 24), hour_scale = c(0, 4, 8, 12) )
plot_time_pattern_series( data_tp, alpha = 0.3, individual_lines = FALSE, title = "Time pattern profiles (kml3d results)", hour_limits = c(0, 24), hour_scale = c(0, 4, 8, 12) )
data_tp |
data frame including questionnaire_id, kml3d results and time pattern data. |
alpha |
opacity of the time pattern lines. |
individual_lines |
show individual time pattern lines (boolean). |
title |
plot title. |
hour_limits |
y axis limits (hours). |
hour_scale |
y axis breaks (hours). |
ggplot2 time pattern series plot.
Calculate crossed variables double breakdown of variance.
supvar_crossing_stats( res_gda, var_quali_df, var_quali, impute = TRUE, axes = 1:2 )
supvar_crossing_stats( res_gda, var_quali_df, var_quali, impute = TRUE, axes = 1:2 )
res_gda |
MCA result. |
var_quali_df |
the supplementary data frame. |
var_quali |
crossed supplementary variable (vector separated by "_"). |
impute |
impute missing data (boolean). |
axes |
the GDA dimensions to calculate double breakdown of variance. |
Returns a list:
var |
double breakdown of variance. |
reg |
result of linear regressions. |
Calculate results for supplementary variables.
supvar_stats(res_gda, var_quali_df, var_quali, impute = TRUE, impute_ncp = 2)
supvar_stats(res_gda, var_quali_df, var_quali, impute = TRUE, impute_ncp = 2)
res_gda |
GDA result. |
var_quali_df |
the supplementary data frame. |
var_quali |
supplementary variable name (string). |
impute |
impute missing data (boolean). |
impute_ncp |
number of dimensions to predict missing values. |
Returns a list:
weight |
numeric vector of categories weights |
cord |
data frame of categories coordinates |
cos2 |
data frame of categories square cosine |
var |
data frame of categories within variances, variance between and within categories and variable square correlation ratio (eta2) |
v.test |
data frame of categories test-values |
supvar |
vector of the supplementary variable categories |